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Longitudinal Analysis of Categorical
Epidemiological Data: A Study of
Three Mile Island
by Stephen E. Fienberg,* Evelyn J. Bromet,t Dean
Follmann,* Diane Lambert,* and Sherryl M. May**

The accident at the Three Mile Island nuclear power plant in 1979 led to an unprecedented set of events
with potentially life threatening implications. This paper focusses on the analysis of a longitudinal study
of the psychological well-being of the mothers of young children living within 10 miles of the plant. The
initial analyses of the data utilize loglinear/logit model techniques from the contingency table literature,
and involve the fitting of a sequence of logit models. The inadequancies of these analyses are noted, and
a new class of mixture models for logistic response structures is introduced to overcome the noted short-
comings. The paper includes a brief outline of the methodology relevant for the fitting of these models
using the method of maximum likelihood, and then the model is applied to the TMI data. The paper
concludes with a discussion of some of the substantive implications of the mixture model analysis.

Introduction
The analysis of epidemiological data has evolved over

the past 25 years with the development of new meth-
odology for the analysis of categorical data using log-
linear and logit models. This methodology has led to
new formulations for epidemiological questions, and
these in turn have stimulated additional methodological
developments for the analysis of categorical data. In
this paper we review some of the methodology for the
analysis of categorical data from the special perspective
of longitudinal epidemiological data, and we illustrate
the methodology in the context of a study of the mental
health effects of the Three Mile Island nuclear accident,
which occurred in the spring of 1979.

Implicit in the study of longitudinal data is the rec-
ognition that we are interested in the study of change-
in the context of the Three Mile Island study there are
both changes in attitudes and changes in mental health
status. The classical cross-sectional study is useful for
learning about populations as they are; to study change
we need observations or information about two or more
periods of time. Studies often have looked at net change
by comparing the results of two or more separate cross
sections, but epidemiological researchers have long
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noted that, to study change at a level that will allow for
understanding of the processes that cause or are related
to change, we really need to follow individual units lon-
gitudinally. The primary longitudinal design used in ep-
idemiology is the cohort study, in which groups of in-
dividuals are assembled and classified with regard to
exposures of interest and are followed forward in time
to determine the development of disease. Breslow (1)
provides an excellent review of cohort analysis in epi-
demiology for the study of disease incidence or mortality
rates. The problem we choose to study in this paper is
a specialized version of the broad class considered by
Breslow, in which we observe the repeated measure-
ment of a selected set of variables.

Loglinear Model Developments for
Epidemiological Data
The historical development of methods for the ana-

lysis of categorical data has been described elsewhere
(2-4). The brief review here focusses on developments
tied in part to epidemiological research.
Although Yule (5) presented the crossproduct ratio

as a measure of association in 2 x 2 contingency tables
and developed ideas on association in 2n tables, it was
Bartlett (6) who developed these ideas through his def-
inition of the concept of no second-order interaction in
2 x 2 x 2 tables. Bartlett's model was the forerunner to
the logit or logistic models used in this paper. Dyke and
Patterson (7) used a generalization of Bartlett's ap-
proach in developing a logit model for the knowledge of
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cancer facts as a function of categorical explanatory var-
iables involving exposure to media. Other key figures
in the development of these methods during the 1950's
include Berkson, Cochran, Cox, Haldane, and Woolf.
Two major epidemiological studies in the 1960's gave

a renewed stimulus to the development of methods for
categorical data analysis: the Framingham Heart Study
(8) of atherosclerotic disease, and the National Halo-
thane Study (9) of massive hepatic damage subsequent
to surgical anesthesia. The Framingham study led to
the work of Truett el al. (10) and Walker and Duncan's
(11) linear logistic model for polytomous response var-
iables. While working on the halothane study, Bishop
(12) rediscovered an iterative procedure proposed for a
related categorical data problem by Deming and Ste-
phan (13) and showed how it could be used to solve the
likelihood equations associated with the class of logli-
near and logit models described by Birch (14): This work
led to developments by Goodman, Haberman, Mantel,
Plackett, and others.

In the 1970's these two streams of research generated
by the Framingham and Halothane studies were joined
(15), and a general approach to the analysis of multi-
variate categorical data emerged. It is this approach to
the analysis of longitudinal epidemiological data which
we adopt and extend in this paper.

Outline of Paper
In the next section, we present a description of the

mental health study of the Three Mile Island (TMI)
accident. Then, we illustrate the application of the log-
linear/logit model techniques for the analysis of contin-
gency tables in a detailed analysis of the TMI data using
a sequence of logit models. A residual item at the end
of that section is how to present a succinct summing of
the salient features of our analysis.
We next introduce a new class of mixture models for

logistic response structures, and we present a brief out-
line of the methodology relevant for the fitting of these
models. Finally, we reanalyze the TMI data using the
mixture model approach.

The Three Mile Island Study
The accident at the Three Mile Island (TMI) nuclear

power plant in central Pennsylvania began on March
28, 1979 and led to an unprecedented set of events with
potentially life threatening implications. Because of the
possible grave danger to the surrounding communities,
particularly to children who were presumed to be highly
susceptible to the hazards ofradiation, mothers ofyoung
children were ordered to evacuate from the five-mile
radius around the plant. In fact, most mothers living
within ten miles of the plant evacuated with their chil-
dren. Since then, controversies surrounding the clean-
up operations of the damaged unit and the reopening of
the undamaged reactor, and government probes into
mismanagement at the plant before and after the ac-
cident have ensured continued public awareness of the

Table 1. TMI mother sample.

Time of interview Sample size
Winter, 1979 327
Spring, 1980 311 (95%)
Fall, 1981 281 (86%)
Fall, 1982 268 (82%)

problems at TMI. As a result, the psychological well-
being of residents of the TMI area has been a major
public health concern.

In order to evaluate systematically the impact of the
stresses associated with the accident, a longitudinal ep-
idemiologic study (16) was designed which focussed on
the mental health of mothers of young children living
within ten miles of the plant. Mothers were selected
because of (a) possible additional stress they experi-
enced as a result of the evacuation order; (b) their con-
cerns about the potential effects of radiation exposure
on their children; and (c) data from Great Britain in-
dicating greater vulnerability to depression among
mothers of young children (17).
Four waves of interviews were conducted to ascertain

changes in psychological symptomatology over time and
effects of TMI-related factors. In this set of analyses,
the two risk factors of concern are distance of residence
from the plant and perceptions of the dangerousness of
TMI. With respect to distance, public policy attention
had focussed on the five mile radius as being the area
at greatest risk for radiation exposure. As a result, the
psychological stress of living nearer to the plant was
expected to be higher among residents in that area.
Preliminary analysis of data collected during the year
after the accident indicated that mothers within the five
mile radius were in fact experiencing greater symptom-
atology than mothers living 6-10 miles away. Thus dis-
tance was dichotomized for most of the present analyses
into 0-5 miles vs. 6-10 miles. With respect to danger,
half of the mothers interviewed perceived TMI as dan-
gerous at each interview. This perception can be con-
ceptualized as a risk factor since it might indicate a sense
of vigilance and concern about the plant.

Sample
The target sample was assembled from newspaper

listings of birth announcements appearing in the three
area newspapers for the period January 1, 1978-March
28, 1979. This strategy was selected because of a state
law prohibiting access to birth certificates compiled by
the state health department. As Table 1 shows, a total
of 268 mothers of young children were interviewed on
each of four occasions, i.e., 9 months, 12 months, 30
months, and 42 months after the accident. The greatest
loss to follow-up occurred during the 18 months between
the second and third wave, which was also the longest
interval between interview points. Most mothers lost
to follow-up had moved out of the area and therefore
were ineligible for continued participation in the study.
The State Health Department conducted a study of mo-
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bility into and out of the TMI area before and after the
accident and found no evidence to indicate that the rate
increased after the accident. No differences on basic
demographic or mental health variables were found be-
tween participants and nonparticipants at any wave
when the data were examined cross-sectionally.

Demographically, the sample was relatively homo-
geneous. At the start of the study, the median age was
27-28 years, two-thirds of the mothers being less than
30 years of age. Most of the women had one or two
children. About half of the mothers had some formal
education beyond high school. Two-thirds of the women
had grown up in the same area in which they were
currently living, were Protestant, and were not working
outside the home. Of the mothers 98% were married
and Caucasian. They were also predominantly middle
income, having husbands who were primarily engaged
in white collar occupations.

Procedure
The interviews were conducted in participants' homes

and lasted approximately 90 minutes at each wave. The
interviewers were mental health professionals with at
least a masters degree in a related field and a minimum
of five years of work experience. Although initially re-
spondents were randomly assigned to interviewers, the
same interviewer was retained where possible for each
follow-up interview in order to reduce attrition.

Mental Health
The present analysis focusses on changes in the TMI

risk factors noted above in relation to changes in symp-
tomatology. Current symptom levels were determined
from responses to a 90-item self-report checklist (18)
administered at each wave. This checklist inquires
about symptoms during the two-weeks preceding the
interview. The items are rated on a five-point 0-4 dis-
tress scale (not at all, a little bit, moderately, quite a
bit, extremely). Items cover symptoms related to
depression, anxiety, psychosomatic complaints, para-
noia, psychotic feelings, and the like. The psychometric
properties have been well documented, and normative
data are available on a community sample of women.
We use as a summary measure in the present analysis
the Global Severity Index (GSI) which is the average
distress level for the 90 items.
The distribution of GSI scores at each wave was se-

verely skewed, with most mothers exhibiting relatively
low scores, e.g., in the first wave, 221 mothers had a
score less than 0.5, 85 had a score between 0.5 and 1.10,
and 21 had a score greater than 1.10. We attempted to
analyze the data for longitudinal purposes in the loga-
rithmic scale and by breaking the distribution into cat-
egories. The analyses discussed in the following sections
uses several different choices for the GSI categories.
For the moment, suppose that we have trichotomized

GSI scores. Thus the basic data of interest consist of
the GSI scores and perception of danger at each of four

waves plus distance and they form a (3 x 2)4 x 2 con-
tingency table. We have 257 complete observations to
spread over these 2592 cells, so that the table is ex-
tremely sparse. Even if we had dichotomized the GSI
scores there would be 512 cells, and we would still need
to find a more succinct way to summarize the data, and
to describe its salient features.

Some Approaches from Loglinear
Model Theory
We assume that the reader has some familiarity with

the basic ideas of loglinear models and their use in the
analysis of two-dimensional and three-dimensional con-
tingency tables such as can be found in Fienberg (2,3)
or in Grizzle and Koch (19). Throughout this paper we
consider the estimation of parameters in such models
using the method of maximum likelihood, and we use
likelihood ratio tests to check the goodness-of-fit of our
models. We focus our attention here on models of the
general linear logistic form:

log (1 _p) = IPixi (1)

where p is the probability of a positive outcome on a
dichotomous response variable, and the {xi} are ob-
served values corresponding to a set of explanatory var-
iables. In much of our discussion, the explanatory var-
iables are categorical and the corresponding xi are
indicator variables. The form of expression (1) is suffi-
ciently general to allow for polynomial structures and
interactions of the form encountered in the usually lin-
ear and loglinear model literature.
For concreteness, we consider a situation where GSI

scores have been trichotomized (e.g., high = 3, medium
= 2, and low = 1), and we are interested in predicting
GSI scores for wave 4 as a function of the scores at
waves 1, 2, and 3, and distance from TMI (0-5 miles =
1, 6-10 miles = 2). Thus the data of interest from a
3 x 3 x 3 x 3 x 2 table of observed counts, {Xijkhd}, where
i indexes GSI scores at wave 1, j indexes GSI scores at
wave 2, k indexes GSI scores at wave 3, h indexes GSI
scores at wave 4, d indexes distance from TMI. The
counts are given here in Table 2. The most striking
feature of Table 2 is that most of the mothers are con-
centrated in a few cells that correspond to consistency
on GSI score levels over time, e.g. the largest cells show
medium scores for all four waves.
We are interested in modeling the log odds-ratios or

logits for GSI score at wave 4, e.g.,
log (mijkld/mijk2d) and log (mijk2dImijk3d) (2)

as a function of the four explanatory variables. Actually,
as noted in Fienberg (2) it is somewhat more convenient
to model the log continuation ratios:

log [mijkld/(mijk2d + mi k3d)] and log (mtik2dImijk3d)
(3)
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Table 2. TMI data for GSI scores.

Wave 4
Distance Wave 1 Wave 2 Wave 3 Low4 Med4 High4
LTE 5 Lowl Low2 Low3 2 0 0

Med2

High2

Medl Low2

Med2

High2

Highl Low2

Med2

High2

GT5 Lowl Low2

Med2

High2

Medl Low2

Med2

High2

Highl Low2

Med2

High2

Med3
High3
Low3
Med3
High3
Low3
Med3
High3
Low3
Med3
High3
Low3
Med3
High3

Low3
Med3
High3
Low3
Med3
High3
Low3
Med3
High3
Low3
Med3
High3
Low3
Med3
High3
Low3
Med3
High3
Low3
Med3
High3
Low3
Med3
High3
Low3
Med3
High3
Low3
Med3
High3
Low3
Med3
High3
Low3
Med3
High3
Low3
Med3
High3

2
0
0
2
0

0
0
0

5
1
0

3
2
0

0
0
0
0
0
0
0
0
0
0
1
0
1
2
0
1
0
0-
0
0
0
4
5
0
2
6
0
0
0
0
0
0
0
0
1
0
0
0
0

3
0

1
4
0

0
0
0
1
4
0

2
38
2

0
2
1

0
0
0
0
4
1
0
2
5
2
0
0
0
3
0
0
0
0
4
15
0
2
53
5
0
1
3
0
0
0
0
13
0
0
7
2

0
0
0
0
0
0
0
0
0
0
0
0
4
3

0
0
1

0
0
0
0
3
4
0
0
12
0
0
0
0
0
0
0
0
0
0
1
0
0
6
1
0
1
1
1
0
0
0
0
0
0
2
7
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as the likelihood function -factors into separate likeli-
hoods for the two ratios. For example, we might con-

sider fitting a simple additive model, to each log ratio,
of the form

W + Wl() + W2(0) + W3(k) + W5(d) (4)

where each set of w-terms adds to zero when summed
over the subscript. These models can be fit using the
method of iterative proportional fitting (as in the BMDP
4F program) or using a version of the Newton-Raphson
method, as in the GLIM program of Baker and Nelder
(20).
A summary of the fit of selected versions of model (4)

is given in Table 3. The fit of the additive model appears

to be good with each of the G2 statistics (minus twice
the log likelihood ratio) being roughly equal to the cor-

responding degrees of freedom (df). The second model
listed in Table 3 drops the effect of distance, and the
differences in G2 values,

23.0 - 22.7 = 0.3
and

A -1. 1

26.9 - 25.5 = 1.4

indicate that distance as a variable has neg

dictive power.
Finally the last model in the table drops

of GSI score at waves 1 and 2. This model hai
chainlike interpretation-GSI at wave 4 is i]

of GSI at waves 1 and 2 given GSI at wa
take differences in loglikelihood radio st

models (ii) and (iii) we get

AG12 = 35.6 - 23.0 = 12.6

AG22 = 36 - 26.9 = 9.1

When we refer these differences to a x2 dist
4 df, the values are significant at the 0.0g
levels, respectively. Thus there appears to
sidual effects of psychological symptomat
waves 1 and 2 on the GSI scores at wave 4
adjusting for the GSI level at wave 3. Thes
related logit model analyses are described
May (21).

At this stage we reintroduce the information on per-

ception of danger, as measured at each wave, and we

consider perception as a risk factor for psychological
stress. The 34 x 2 table we have been working with is
a marginal table for the full (3 x 2)4 x 2 array. Separate
analyses of the 3 x 2 tables for GSI score by perception
for each of the four waves show that perception of dan-
ger is associated to a modest degree with higher levels
of GSI. Finally an examination of the 24 table giving
perception of danger for the four waves suggests that
mothers tend to give the same answer to the question
of perception of danger from one wave to the next. We
are interested in developing an overall model for the
data which attempts to incorporate these preliminary
results from the various marginal arrays.
We can combine the information from the various

preliminary analyses in diagramatic form as follows:

G, G2 -- G3 G4
1 t t T
P1 -> P2 -> P3 -* P4

(5)

iaiI = 1 where Pi and Gi represent perception of danger and

GSI scores, respectively, in wave i for i = 1, 2, 3, 4.
rligibl pre-

The horizontal arrows suggest that there is a Marko-
rligible pre- vian-like form of persistence for both GSI symtomatol-

ogy and perception of danger over time. The vertical
the effects arrays suggest that perception of danger continues to
s a Markov- reinforce the existence of psychological stress. For the
vdependent moment, we ignore the distance variable.
ye 3. If we We can formulate a loglinear model for the (3 x2
atistics for table that includes the various relationships depicted in

the figure of expression (5) or we can re-express that
model as a sequence of logit four models, treating GSI
at wave i for i = 1, 2, 3, 4 as a response. For the i-th

Adf = 4 model the explanatory variables are perception of dan-
ger at wave i and GSI and perception at all previous
waves. Within this sequence of models we can test, for

tribution on waves 2, 3, and 4, whether perception of danger appears
25 and 0.10 to reinforce psychological stress, i.e., we can test
be some re- whether the parameters linking Pi to Gi are equal to
tology from zero. Although we omit the details of the analysis of
, even after these loglinear and logit models here, they tend to pro-
;e and other vide little support for the effect of perception of danger
in detail in on GSI scores once we adjust for prior GSI scores. The

loglinear and logit model analyses just described are

Table 3. The fit of selected versions of the additive logit model of expression (3).

Log likelihood ratio chi-square statistic (G2)
Model df log ( tixkll ) log (m /k2d()

\)??,iAk + ik,I \ m,ikd I

(i) W + W(i),+ W2(j) + W3(k) + W5(d) 22 22.7 25.5
(ii) w + W1(i) + W2(j) + W:3(k) 23 23.0 26.9
(iii) W + W3(k) 27 35.6 36.0
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Table 4.

Cell Observed Expected
000 159 129.0
001 19 30.5
010 14 28.5
011 11 13.1
100 16 30.6
101 7 11.5
110 12 12.9
111 29 10.3

consistent with a set of regression analyses in which
the logarithms of the original GSI scores are regressed
on current perception and prior log-GSI values.
On the basis of these analyses, we can only conclude

that perception of danger is not a substantial risk factor
for psychological distress. Before we rush to do so, we
need to reexamine the data. We know that those with
a consistently low GSI score tend to cluster at the two
extremes in the response to the question on perception
of danger-consistent responses of "yes" or consistent
responses of "no". Thus, there may well be a latent
variable corresponding to "background propensity" that
we need to take into account before attempting to assess
the impact of perception on GSI level. In the next sec-
tion, we describe a logistic response model that incor-
porates a structure allowing for such individual differ-
ences.

A Mixture Approach to Logit Models
For purposes of simplicity, suppose that we are in-

terested in a dichotomous response variable and that
we are working with a logistic response model of the
form

log P a + E4 ixi (6)

This is the same model as in expression (1) but choose
to highlight the "intercept" term, a. This model assumes
that the population of all individuals with the same val-
ues for the explanatory variables, {xi}, is homogeneous.
Suppose, however, that there is a heterogeneity that is
reflected in differential propensities to yield a positive
response beyond that accounted for by the explanatory
variables. This heterogeneity can be modelled by letting
a be a random variable with distribution function H.
Then, if the observed response has a Bernoulli distri-
bution, the likelihood associated with a response y
(which is 0 or 1) is

l(H,3 y,x) = 1Y

(1[1 1+ a+1iidH(a)) (IL1 + aa+iYix] dH(a) (7)

Follmann (22) studies the properties of these mixture
models and considers the estimation of the P3i when the

mixing distribution, H, is unknown. For other ap-
proaches to the problem of extra-binomial variation see
Williams (23) and the references therein.
We now consider an extension to this basic mixture

model that is suitable to the kind of situation depicted
in the figure of expression (5) above. Let Yi be the
random variable giving a dichotomized GSI score at
wave i and let xi be a vector of covariates measured at
time i. Then we let

ea+ 13'xi+-yi-

P(Yi = 1 xi,yi-,) = 1 + ea+1'xi+yyi-1

=P(Yila) i=2,3,4
(8)

where yi-1 is the observed response in the previous
wave. The contribution for an individual to the likeli-
hood comes from putting together the Bernoulli con-
tribution for waves 2, 3, and 4, then giving a a distri-
bution H(a), and finally integrating over H, i.e.,

P(Y2 = Y2, Y3 = Y3, Y4 = Y4) =

fP(Y2 a)Y2[1 - P(Y2 a)]l-Y2P(Y3 a)Y3
[1 - P(Y3 a)]'-y3P(Y4 a)4[1 - P(Y4 a)]'-Y4dH(a)

(9)

The likelihood is found by taking a product of these
probabilities over all individuals in the sample. We es-
timate H, -y, and 13 via the method of maximum likeli-
hood.
The mixture model when considered as an alternative

to an unmixed model can lead to insight in two major
ways. First, the mixing distribution, H, may be inter-
pretable. Second, the pattern between GSI, time, and
preception of danger may be subjected to so much 'noise'
that spurious conclusions may be drawn unless the noise
is accommodated.
To ensure identifiability, we require that H be a dis-

crete distribution with a bound C on the number of
support points. That is, there are a finite number of
possible values for a (a1, a2, ... ,a,) with associated
probabilities q1, q2,... ,q where c - C. This bound
depends on the observed covariates (21). Since the num-
ber of support points c is unknown, this leads to some
tricky theoretical problems when we attempt to check
the goodness of fit of our model given by Eqs. (8) and
(9), but we do not dwell on such problems here.
The actual computation of parameter estimates re-

quires a different computing algorithm than those that
are used for logistic response models. Follmann (21)
describes an adaptation of an algorithm described by
Everitt and Hand (24) which can be viewed as a special
case of the EM algorithm of Dempster, Laird, and
Rubin (25). For the TMI analyses described in this pa-
per, we have an estimated mixing distribution, H with
c = 2 components. The EM algorithm as implemented
here is very slow to converge-especially when con-
trasted with the iterative scaling or GLIM algorithms
referred to above.
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Mixture Model Analysis of TMI Data
We now apply the mixture model to the TMI data.

Our purpose is to explore where adjusting for the dif-
fering background propensities to view TMI as dan-
gerous changes the overall conclusions from the anal-
yses of the previous section.
As explanatory variables in the logistic response

structure of expression (8) we have: (i) current percep-
tion of danger (CP), (ii) distance from TMI (DIST), (iii)
dichotomized GSI at previous wave (GSIL). For all of
the variants on this model which we examined, although
we allowed for a mixing distribution with 2 or more
values for a, from the data we estimate that there is
only one group, i.e., c = 1. We tried various cutpoints
for dichotomizing GSI scores and they yielded basically
similar results. For the following results we used a
wave-dependent cutpoint, which classified the lower 3/
4 of the ranked GSI scores as 0 and the upper 1/4 as 1:

logit (GSI) =

-1.65 + 0.39CP - 0.95DIST+ 2.41 GSIL
(-5.96) (1.78) (-2.82) (12.36)

The numbers in parentheses are coefficients divided by
their asymptotic standard deviations. For the key coef-
ficient of interest, corresponding to the effect of per-
ception of danger on the odds of high GSI score, the
standardized value of 1.78 is marginally significant (be-
tween p = 0.10 and p = 0.05). Note that distance from
TMI which is included here directly (not in a dichotom-
ized form), does have a significant effect. To illustrate
how well this model fits the data we have estimated
expected cell values for the marginal 23 table for GSI
scores at waves 2, 3, and 4 (Table 4). The fit of the
model is clearly poor.
We can also consider a model which reverses the ver-

tical arrows in the figure of expression (3), i.e., consider
a model which predicts perception of danger from GSI
level. As explanatory variables we have (i) current GSI
(CGSI), (ii) distance (DIST), (iii) perception at previous
wave (PL), and (iv) a dummy variable which is 0 for
wave 2 and 1 for waves 3 and 4 (WAVE). The GSI scores
here do not necessarily need to be dichotomized and in
the analyses reported below they are untransformed.
Here we fit both the standard logistic response model
and the mixture model. In the latter case the estimated

number of groups is c = 2, so that we get two estimated
intercept terms (Table 5). For the mixture model, the
standard errors were computed assuming that c was
known to be 2 a priori. These are two clearly identified
components in our analysis and this leads to our esti-
mate of c = 2. It remains possible that c > 2, and thus
our assumption of a known value of c is likely to make
the standard errors somewhat smaller than they should
be, and the standardized coefficients a little bit too
large.
The estimated mixing distribution is

H=0.398&1.93± 0.6181.55

The distribution puts probability 0.39 on 'a = -1.93 and
probability 0.61 on a2 = 1.55.

In both analyses there now seems to be a significant
link between GSI scores and perception of danger. The
two analyses can be contrasted in several different
ways. First, the difference in the regression coefficients
for the covariates are minimal. The main difference is
a reduction in the magnitude of the coefficient for per-
ception of danger of the previous wave. Second, the
mixture model fits much better than the unmixed model.
The two models differ by only two parameters and -2
[loglikelihood (NO-MIX) - loglikelihood (MIX)]= 2
(431.46 - 403.44) = 56.04. Referring this value to a X22
reference distribution, we see that it is highly signifi-
cant, i.e., there is an important improvement in fit as-
sociated with the mixture model. Under a nonmixture
model, we are assuming that the only difference in the
probability of an outcome lies in differences in the cov-
ariate values. Thus, if two mothers have the same cov-
ariate values, they have the same probability of the
outcome. The mixture model permits two mothers with
the same covariate values to have two different prob-
abilities of the outcome, corresponding to high and low
propensities to perceive the reactor as dangerous.
As an indicator of the fit of the mixture models we

have computed estimated expected values for both the
mixture and nonmixture models for the 23 marginal ta-
ble of perception of danger at waves 2, 3, and 4 (Table
6). The improvement in the fit of the mixture model
over the nonmixture model is reflected in these esti-
mated expected values. The major residual discrepancy
occurs in the 000 cell, but it is not excessively large.
The interpretation of the key estimated coefficients

ble 5.

No mixing Mixing
Coefficient Standardized Coefficient Standardized

Intercept - 0.676 - 2.401 - 1.926 - 3.761
1.554 2.988

PL 1.685 9.775 0.641 2.387
CGSI 1.003 3.428 1.260 3.046
DIST .042 1.433 .096 1.794
WAVE 2-0 - 0.294 - 1.637 - 0.404 - 1.831

Loglikelihood - 431.46 - 403.44
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Table 6.

Unmixed Mixed
Cell Observed expected expected
000 39 9.4 30.5
001 8 13.7 12.9
010 9 15.2 13.4
011 15 32.5 13.1
100 25 22.7 19.7
101 13 37.0 18.7
110 14 41.4 19.8
111 144 94.6 138.0

within the mixture model is as follows. The odds for the
probability of the perception of danger are increased by
(i) perception of danger at the previous wave, (ii) larger
current GSI scores and (iii) increased distance from
TMI. (This latter variable has a different sign than we
expected to find but its standardized coefficient is only
marginally significant.)

Additional analyses involving this mixture model that
allow for different coefficients at different waves do not
appreciably change either the fit of model or the general
interpretation of the coefficients. We are left with some-
what mixed evidence on the implications of the percep-
tion of danger as a risk factor for psychological stress
in the aftermath of the TMI accident. Yet enough evi-
dence has emerged in our analyses to warrant close
scrutiny of this aspect of psychological stress in con-
nection with other large-scale environmental hazards
with potentially life threatening implications.
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